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Abstract. Direct measurements are reported of the kinetic energies〈Ek〉 of FCC neon at
seven temperatures between 4.25 and 20.2 K. The measurements employed the electronvolt
spectrometer which is the neutron scattering instrument at the ISIS neutron source, UK.
Wavevector transfersQ from 306 to 1158 nm−1 were used, far larger than previously, in a regime
where possible final-state-effect corrections to the observed longitudinal neutron Compton profile
J (y) are easily deal with by a simple correctional procedure. The results are of comparable
precision with the best previous work, carried out using the HRMECS instrument at IPNS,
Argonne. From those previous measurements, Peeket al give a ground-state kinetic energy
of 49.1 ± 2.8 K. Path-integral Monte Carlo calculations were performed using both HFD-C2
and Lennard-Jones pair potentials. At 4.13 K, 10.13 K, 15.69 K and 20.31 K the HFD results
were 41.6 ± 0.1 K, 42.6 ± 0.1 K, 46.5 ± 0.1 K and 47.8 ± 0.1 K, respectively. These values
are broadly in agreement with the current measurements. They are significantly lower than the
published values obtained from an HFD-based Wigner–Kirkwood high-temperature expansion
including terms up to ¯h6.

1. Introduction

Neutron Compton scattering (NCS) is an experimental technique which can be used to probe
directly the ground-state momentum distributionn(p) of atoms in condensed matter. The
technique was first suggested almost 30 years ago [1] and it is analogous to the measurement
of electron momentum by photon Compton scattering [2]. As with Compton scattering, the
interpretation is based on the validity of the impulse approximation (IA) which is exact when
both the energy and the momentum transferred to the target are infinite [3]. Deviations from
impulsive scattering occur at finite values ofQ and are referred to as final-state effects (FSE)
[4]. The question of when the IA may be deemed valid is still a matter of debate although
it is agreed that FSEs become smaller at higherQ [5]. High-momentum transfers can be
achieved with inverse geometry spectrometers receiving high-energy neutrons from pulsed-
spallation neutron sources [6], which unlike reactors provide sufficient flux at the incident
energies required, 10−1–102 eV.
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Knowledge ofn(p) permits scalar properties such as the average kinetic energy〈Ek〉
to be known, potentially on a par with fundamental macroscopic thermodynamic properties
such asP –V –T relations and heat capacity. The NCS technique has already proved
successful in determining atomic momentum distributions and in obtaining directly values
for the mean atomic kinetic energies of a number of light elements, e.g. liquid and solid
hydrogen [7], hydrogen-bonded materials [8], solid [9] and liquid [10] helium, other noble
gases in both solid and liquid phases [11–13], metals [14] and graphite [15]. Moreover,
because the centres of the observed recoil peaks are separated kinematically by nuclear
mass differences, the NCS technique can selectively probe the dynamical characteristics of
particular atomic species in complicated systems, e.g. in metal hydrides [16] and glasses [17].

Condensed neon is of particular interest as it is not a pure quantum system such as he-
lium nor does it behave classically as do the other noble-gas systems at high temperatures.
In both liquid and solid argon, krypton and xenon the momentum distributions are given by
the Maxwell–Boltzmann distribution, namely a Gaussian with a width related to the kinetic
energy [18]. In neon the shape ofn(p) is still Gaussian but quantum effects are manifest as
an increase in the measured values of the kinetic energy above the classical expectation [13].
Solid neon was chosen for the present work as it is a simple system for which firstly, given
an interatomic potential, a rigorous calculation of〈Ek〉 is possible, secondly the distribution
n(p) had not been measured at very large wavevector transfersQ and thirdly other exper-
imental data are available for comparison. Inelastic neutron scattering experiments have
been performed [12] with energy transfers in the electronvolt regime on solid natural neon
at five temperatures between 4.7 and 26.4 K and at pressures between equilibrium vapour
pressure and 17.6 MPa. They compared measurements of〈Ek〉 with existing theoretical
calculations and showed that none of these predicted their observed ground-state kinetic
energy. These experiments were carried out within the IA but at energy and momentum
transfers where FSEs were significant. In this paper we report measurements of the mean
atomic kinetic energy of solid neon performed at energy and momentum transfers much
larger than those reached in previous measurements. Under these conditions, corrections
for FSEs are unnecessary and a more reliable comparison with theory can be made. Our
data are compared with both path-integral Monte Carlo (PIMC) calculations carried out
using two different two-body interatomic potentials for temperatures and pressures close to
the experimental conditions and with previous measurements of〈Ek〉.

In section 2 we recall the basic theory of NCS from a monatomic system; in section 3
we describe an experimental technique for measuring the inelastic scattering of neutrons at
very largeQ and detail the conditions of our scattering samples. Section 4 describes the
analysis procedure, including (section 4.2) consideration of the difference betweenS(Q, E)

andSIA(Q, E) for finite Q. Section 5 describes the calculations performed on solid neon, to
produce〈Ek〉-values with which the measurements are directly compared. We conclude with
comments, section 6, on the current state of the art of obtainingn(p) from measurements
at very highQ and of obtaining〈Ek〉 from rigorous theory.

2. Neutron scattering theory

The inelastic differential cross section for scattering of neutrons byN identical scatterers
of massm can be written [19]

d2σ

d� dE
= Nb2

(
kf

ki

)
S(Q, E) (1)
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whereb is a scattering length,ki andkf are the magnitudes of the initial and final neutron
wavevectors, respectively,

Q = ki − kf (2)

and

E = h̄2

2m
(k2

i − k2
f ) (3)

is the energy transfer. The dynamic structure factorS(Q, E) has the form

S(Q, E) = 1

2πh̄

∫ ∞

−∞
I (Q, t) exp

(
− iEt

h̄

)
dt. (4)

The intermediate scattering functionI (Q, t) is the sum of a thermodynamic average:

I (Q, t) = 1

N

∑
ij

〈exp{−iQ · ri (0)} exp{iQ · rj (t)}〉 (5)

whereri andrj are atomic position operators.
In the extreme limit of largeQ when incident neutrons scatter incoherently and

independently from individual nuclei,S(Q, E) becomes proportional ton(p).

S(Q, E) → SIA(Q, E) =
∫ ∞

−∞
n(p)δ

(
E − Er − h̄

m
Q · p

)
dp (6)

with n(p) normalized to unity and the recoil energy isEr = h̄2Q2/2m. In this limit, with
the z axis alongQ, equation (6) can be written [20]

SIA(Q, E) = m

h̄Q
J(y) (7)

where the scaling variable is

y = m

h̄Q
(E − Er) (8)

and the ‘longitudinal neutron Compton profile’ is

J (y) =
∫ ∞

−∞
n(px, py, y) dpx dpy. (9)

The neutron Compton profileJ (y), like n(p), is also normalized. For an isotropic sample
such as a liquid or a polycrystalline solid,n(p) = n(p) and the orientation ofQ with respect
to the scattering sample is immaterial. Hereafter, we omit vector designation ofp and of
Q.

3. Experimental arrangements

3.1. The neutron electronvolt spectrometer

The electronvolt spectrometer (eVS) at the UK pulsed-neutron source ISIS, Rutherford
Appleton Laboratory, was specifically developed for the direct measurement of atomic
momentum distributions and is equally suited to the study of both low- and high-mass
systems [21]. In this work, two independent measurements, referred to as measurements
A and B, were made using different spectrometer configurations but the same sample
conditions. A full description of the eVS and of a typical spectrometer configuration can
be found in the literature [22, 23] and only a brief description is given here.
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The eVS receives a broad continuous-energy spectrum of incident neutrons in pulses at
50 Hz, from the ambient water moderator which is situated near the ISIS tantalum target.
Detectors at fixed anglesφ register neutron spectra as the neutron time of flight (TOF)
from the moderator. Two types of neutron detector were used in measurement A:3He
gas detectors and recently installed lithium-doped glass scintillator detectors. The intrinsic
properties of the gas detectors are well understood but their efficiency is almost an order
of magnitude lower than that offered by the scintillator detectors. Measurement B was
undertaken 18 months later, by which time only higher-efficiency scintillation detectors
were in use. The aim of measurement B was to investigate theQ dependence of the FSEs
in neon; however, as we shall show, FSEs were not present above the statistical accuracy
of either data set. The〈Ek〉-values obtained from measurement B are included here as they
demonstrate the experimental consistency offered by the eVS and its analysis routines.

The final energy of scattered neutrons is fixed by a nuclear resonant filter-difference
technique. Thin metal foils in the scattered neutron paths absorb neutrons having energies
h̄2k2

f /2mn centred at the nuclear resonance energies,mn is the neutron mass. Gold (197Au)
and uranium (238U) analyser foils of thickness 10µm and 30µm, respectively, were used
in this study. When the foils are removed from the scattered beam, the total spectrum is
available for subtractions. The neutron TOF over the incident flight path from the moderator
gives the incident energy ¯h2k2

l /2mn and the magnitude of the wavevector transfer is given
by

Q = (k2
i + k2

f − 2kikf cosφ)1/2. (10)

The accuracy of the method depends upon the choice of resonance filter, upon precise
knowledge of its properties, upon reliable data normalization, and upon accurate calibration
of instrument geometry [24, 25]. Significant effort has been directed towards the complete
characterization of the instrument and some earlier experimental anomalies can now be
attributed to uncertainties in the data analysis procedure. For example, the observed
disagreement between a Debye model of the kinetic energy of lithium and that observed in
an early measurement of lithium has now been attributed to a deficiency in the early data
analysis [23].

The energies and energy widths of the nuclear resonances used were obtained from
measurements of the recoil scattering from the elements Pb, V, Al and Be. The peak cross
sectionsσE of the resonances (taking into account Doppler broadening) were obtained from
tables [26, 27] and are listed in table 1. The angular range of each detector module and
the corresponding wave-vector transfer for each nuclear resonance and detector module
combination are also shown in table 1. The three nuclear resonances of uranium, used
to define the scattered beam energy, are sufficiently well separated from one another to
avoid the overlap of the scattering from the neon sample and the vanadium container. The
resonance foils were automatically cycled in and out of the scattered beams every 5 min
to minimize possible systematic errors arising from time variation in the efficiencies of the
detector systems. For measurement A, gold foils were used in conjunction with one of two
banks of ten3He gas detectors at back-scattering angles and with both banks of ten3He
gas detectors at forward-scattering angles. Uranium foils were used in conjunction with the
other bank of ten3He gas detectors at back scattering in TOF and a bank of eight glass
scintillator detectors placed at intermediate scattering. For measurement B, uranium foils
were used in conjunction with two banks of eight scintillator detectors placed symmetrically
about the incident beam at intermediate scattering angles and two banks were placed at back-
scattering angles. The difference spectra (foil out− foil in) were normalized by comparison
of their respective integrals over the TOF region from 500 to 600µs. This is an interval
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unaffected by the analyser foil resonances and near to the region of interest around the
recoil peak. It is more accurate than use of the respective monitor counts, which can show
a few per cent variability.

Table 1. EnergiesER and Lorentzian resolution widthsσE of the nuclear resonance absorption
peaks used. Values forER were deduced from the instrument calibration and the corresponding
σE -values were obtained from tables taken from [26, 27]. They take into account Doppler
broadening of the absorption resonance lineshape and are valid at 295 K.

Measurement A Measurement B

Nominal Wavevector Nominal Wavevector
Analyser ER σE detector angle transfer for20Ne detector angle transfer for20Ne
foil (meV) (Å−1) (deg) (Å−1) (deg) (Å−1)

197Au 4 922± 142 36 583 36.2–54.0 30.5–44.7
141.0–153.0 44.7–96.2

238U 6 671± 163 21 790 105.4–129.2 93.3–107.0 91.6–117.6 83.5–100.8
141.4–153.5 112.2–116.1 124.7–150.3 104.7–115.1

238U 20 872± 131 32 242 105.4–129.2 165.1–189.4 91.6–117.6 147.7–178.4
141.4–153.5 198.6–205.5 124.7–150.3 185.2–203.7

238U 36 680± 223 40 253 105.4–129.2 219.0–251.1 91.6–117.6 195.4–236.4
141.4–153.5 263.4–272.5 124.7–150.3 245.5–270.0

To determine kinetic energies from the measured spectra it is necessary to account for the
resolution contribution iny space for each individual detector. Analytical expressions for
the components of the instrument resolution have been given in a previous paper [24]. There
are five independent contributions to they-space resolution. These arise from uncertainties
in the measured TOF, the distribution in the initial and final flight paths, the scattering angles
and the energy values allowed by the instrument geometry and analyser foil resolution. In
each measurement the instrument geometry was calibrated by analysis of diffraction from
a slab sample of polycrystalline Pb and of recoil scattering by Pb, V, Al and Be (corrected
for inelasticity), with a U foil placed in the incident beam. The U foil was placed well
away from the detectors in order to avoid spurious scattering. First the total flight path
including delay time to each detector was determined from the position of the resonance
absorption lines. Then these quantities were used to calculate the scattering angles for each
detector using the positions of the four longestd-spacing Pb Bragg peaks. This procedure
has been explained in detail elsewhere [25]. In each case, a recoil correction was made.
The resolution of the eVS is dominated by the intrinsic energy width of the analyser foil
nuclei used. This function was previously determined for each detector both analytically
and experimentally by measurements of the recoil scattering from heavy systems such as
Pb and Sn and, in the case of gold, the absorption is well represented by the following
Lorentzian expression:

RE(y) = constant

y2 + σ 2
E

(11)

whereσE is the width of the Lorentzian resolution functionRE(y). In the case of the U
analyser foil, the absorption cross section for a sufficiently thin foil (less than 50µm) is well
represented by a Gaussian function. This is because the intrinsic lineshape is dominated by
thermal Doppler broadening at room temperature. The angular resolution is small except for
scattering from hydrogenous systems and was determined for all detectors by a Monte Carlo
calculation. Relatively small geometric resolution contributions arise from the angular width
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of a given detector, from the depth of the neutron moderator, and from the distribution of
incident- and scattered-neutron path lengths. These geometric contributions are determined
by a standard calculation procedure [21]. All resolution components except that from the
Lorentzian resonance of gold are well described by Gaussian functions. The resultant
resolution function for a gold analyser is therefore a Voigt function, i.e. a convolution of a
Gaussian and a Lorentzian, and that for a U analyser foil is a Gaussian.

In general the scattered flight path is large compared with the detector height and the
geometrical component of the resolution resulting from the TOF range offered by the finite
detector height can be neglected. Limited beam time was available for measurement B and
count rates were maximized by placing the detector banks close to the sample. Unfortunately
the additional geometrical resolution was found to be both complicated and significant at
back scattering and could not be successfully removed from these data. Fortunately the
resolution effect is strongly dependent on the scattering angle and was not detectable in the
smaller-angle data and only these data are presented here.

Table 2 lists the resolution components for detectors in the middle of each detector bank
for measurement A. It is clear that, in each case, the dominant contribution arises from
the foil resonance and that the narrowest resolution can be obtained from the scintillator
detectors with the uranium foil at intermediate scattering. These data offer the most accurate
and reliable measurement of the kinetic energy. The remaining data provide useful checks
on the data analysis procedures and instrument calibration. Furthermore, the use of both U
and Au foils in the various detector banks in measurement A, as shown, made possible a
variety of cross checks for possible systematic errors.

Table 2. Momentum resolution components1y for the eVS detectors in the centre of each
detector bank in measurement A. All values listed are Gaussian standard deviations except the
Lorentzian contribution from the gold resonance which is listed as HWHM. The subscriptsθ ,
t , l0, l1 andER relate to the contributions from variations in the scattering angle, time binning,
incident and scattered flight paths and the appropriate nuclear resonance. The total Gaussian
and Lorentzian resolution widths and the widths of each resonance are also given.

Gaussian Lorentzian
θ ER 1ER 1yθ 1y 1yl0 1yl1 1yER

total total
Detector Foil (deg) (meV) (meV) (̊A−1) (Å−1) (Å−1) (Å−1) (Å−1) (Å−1) (Å−1)

Scintillation U 117 6671 63 0.765 0.717 1.308 1.138 3.380 3.941
Scintillation U 117 20 872 131 1.353 2.244 2.313 2.013 3.973 5.662
Scintillation U 117 36 680 223 1.794 3.944 3.066 2.668 5.102 7.831

Gas Au 147 6671 63 0.159 3.156 1.222 0.853 3.175 4.721
Gas Au 147 20 872 131 0.280 9.874 2.161 1.509 3.732 10.883
Gas Au 147 36 680 223 0.372 17.353 2.864 2.000 4.792 18.342

Gas Au 147 4922 142 0.137 2.330 1.050 0.733 8.348 2.662 8.348

Gas Au 45 4922 142 0.481 5.285 2.576 1.663 20.132 6.129 20.132

At long TOF (say, t > 2000 µs), eVS spectra show peaks resulting from neutron
diffraction by the sample. These data are collected simultaneously with the inelastic data.
It is important to know the density of the samples in order to make comparisons with
previous experiments and calculations, since〈Ek〉 is a function of temperature and pressure
(or volume). In the current measurements, good use was made of this facility in the
preparation and characterization of neon (section 3.2).
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3.2. Sample characterization

For both measurement A and measurement B, the natural neon samples [28] were contained
in a V cell about 23 mm wide and 3 mm thick, having a wall thickness of 0.05 mm.
The cross section of the incident neutron beam was a circle of 50 mm diameter with a
30 mm umbra centred on the cell. Cell temperatures were maintained in the sample space
of an ‘orange’ cryostat [29], which provided4He exchange gas at about 1 kPa in a radiant
and physical environment within 0.1 K of the cell temperature. The cell temperature was
maintained constant to within±0.05 K during each measurement. The solid neon samples
were held at a low pressure via an open vertical capillary of 0.5 mm ID, connected to
pressure gauges and a ballast volume, all at room temperature, and constituting a total
volume of about 1 litre. The observed pressure varied in the range 30–60 kPa, depending
on the level of the liquid neon maintained in the capillary. The solid neon was prepared by
first liquefying the sample and then further cooling the sample cell while more neon sample
gas was added. For measurement A the solid samples were run in order: at 10.2 K, then at
4.25 K and finally at 20.2 K. For measurement B the sample temperatures were 4.34, 10.8,
15.2 and 20.1 K. In both measurements a reference empty cell was run at 20 K. Sample
thermometer calibration was checked approximately by the observation of thermal arrest
during sample phase change and at the end of data collection.

Figure 1. Examples of diffraction data obtained in measurement A with the scintillator detectors
at temperatures of 4.25 K, 10.2 K and 20.2 K. The data have been converted from TOF tod

space. All allowed FCC diffraction peaks (111) to (333) are observed, indicating that a good
degree of polycrystallinity was obtained.

Neutron Compton profile measurements of polycrystalline samples provide the isotropic
average of the longitudinal neutron Compton profile, equation (9). Examples of the eVS
diffraction spectra obtained in measurement A with the scintillator detectors at temperatures
of 4.25, 10.2 and 20.2 K are shown in figure 1. These spectra were scrutinized, detector
by detector, for differences which would indicate the degree of polycrystallinity, extent of
any preferred orientation, etc. The diffraction data have been converted from TOF tod
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Table 3. Properties of the natural neon samples. The density values were calculated from x-ray
measurements.

T Lattice parameter expected [30] Lattice parameter measured Density
Measurement (K) (nm) (nm) (atoms nm−3)

A 4.25 0.446 38(1) 0.445 50(5) 44.97
A 10.20 0.446 80(1) 0.447 34(4) 44.85
A 20.20 0.450 52(1) 0.449 96(5) 43.78

B 4.34 0.446 38(1) 0.444 52(5) 44.97
B 10.8 0.446 91(1) 0.444 71(5) 44.81
B 15.2 0.448 11(1) 0.446 66(5) 44.45
B 20.1 0.450 45(1) 0.448 73(5) 43.76

space. The data showed no indications of directional dependence. The measured lattice
parameters, the expected values [30] and the calculated sample densities are shown in
table 3. All allowed FCC diffraction peaks (111) to (333) were seen. There is very good
agreement between the observed lattice parameters and those expected for all temperatures
measured. This indicates both that the sample temperatures are accurately known, because
of the very large thermal expansion coefficient of solid neon, and that the samples were not
constrained within the cell.

4. Experimental analysis and results

4.1. Basic analysis

The data analysis procedures for eVS have been described fully elsewhere [21, 25] and only
a summary is given here. Data sets were obtained simultaneously for a variety of different
combinations of detector type, analyser resonances and scattering angles. This diversity
provides a valuable check on the analysis procedure and helps to identify the source and
hence to reduce the effect of systematic errors.

For each neon sample in measurement A, about 6.2 × 106 scattered neutrons were
recorded with the3He gas detectors whereas 1.5 × 108 scattered neutrons were recorded
with the higher-efficiency scintillator detectors. These figures correspond to about 20 h
running time (3400µA h of ISIS proton beam). In measurement B, 8.0 × 108 scattered
neutrons were recorded in 22 h running time (3800µa h). The ‘foil in’ and ‘foil out’ TOF
spectra from each detector were normalized and then subtracted. The total scattering comes
both from the sample and from the vanadium sample can, thermal and vacuum windows
in the cryostat, etc. Our analysis is principally focused on the dominant scattering by the
20Ne nuclei (over 90%, (table 4)). With the sample removed, the residual background
can be determined with high precision. The normalization procedure was repeated for the
empty sample-can data which were then subtracted from each data spectrum. The resulting
differenced TOF spectrum for each detector yielded those neutrons which were captured
by the resonant foil after scattering through the angle defined by that detector. The21Ne
and 22Ne scattering contributions were removed by modelling the scattering in the TOF
spectrum. The relative scattering power for each isotope was determined from the relative
abundance and scattering cross-section (see table 4) and a least-squares fit was made to the
neon recoil peaks in the TOF spectrum using the expression

S(t) = R(T ) ⊗ [aG(s22, t − t22) + bG(s21, t − t21) + cG(s20, t − t20)]A (12)
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Table 4. Properties of neon isotopes.

Relative abundance [31] Mass Scattering cross section [32] Relative scattering intensity
Isotope (%) (amu) (bn) (%)

20Ne 90.48(3) 19.9924 2.671(14) 92.7
21Ne 0.27(1) 20.9938 5.6(3) 0.6
22Ne 9.25(3) 21.9914 1.88(1) 6.7

whereS(t) is the measured spectrum,A is a scaling factor,⊗ signifies a convolution,R(t)

is the instrument resolution function and the constantsa, b andc are the relative scattering
powers of the22Ne, 21Ne and20Ne nuclei, respectively. The functionsG() are Gaussians
centred at the IA recoil position wheret22, t21 and t20 are the recoil peak positions for the
corresponding neon isotopes. The ratios of the Gaussian variancesσ22, σ21 and σ20 were
scaled to the ratio of the fourth root of the corresponding isotopic mass. Figure 2 shows
an example of one of the TOF spectra collected with the scintillation data for the run at
4.25 K. The three Gaussian contributions are shown together with the sum which is a good
fit to the experimental data. The22Ne and21Ne scattering contributions were subtracted in
the TOF spectrum and each differenced spectrum was transformed into momentum space
using equation (8) and an atomic mass of 20 amu.

Figure 2. A typical TOF spectrum obtained from one of the scintillator detectors. The scattering
angle was 105.3◦ and the sample temperature was 4.25 K. The data display a feature at 280–
300µs corresponding to the superposition of20Ne, 21Ne and22Ne scattering contributions. The
small feature centred at 297µs is due to the recoil scattering from the vanadium sample holder.
The 20Ne, 21Ne and22Ne scattering contributions are represented by the broken curves and the
solid curve represents the sum of these three.

Neutron Compton profiles obtained from FCC20Ne at 4.25 K from a variety of different
combinations of absorber resonance, detector type and scattering angle are shown in figure 3.
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In each case the instrument resolution function is included for comparison. The highest-
resolution data are obtained from detectors at back-scattering angles and the 6671 meV
resonance of U. This sequence of plots clearly shows that the scintillator detectors offer a
more accurate measurement of〈Ek〉 than that offered by the gas detectors and with a better
resolution. In each case the data have been fitted by the appropriate Voigt or Gaussian
function. When results of high precision are desired, it becomes necessary to consider the
possible influence that sample-dependent multiple scattering may have upon the derived
spectra. In the present work, we have not attempted to simulate this effect by Monte Carlo
means; rather we have relied upon the use of a ‘thin’ sample and sample can and cross
checking results from different angles to ensure that the effects are indeed negligible. Our
neon sample and the thin sample cell used scattered about 1% and 2%, respectively, of
the incident beam. It is expected that the sample-dependent multiple scattering will give
differing contributions to spectra observed for different scattering angles, so that comparison
of spectra for the different detectors will give an indication of its significance, if any, in the
final results. A comparison of figure 3(a) with figure 3(d) confirms that sample-dependent
multiple scattering, which would be manifest as a broad peak aty-values to the right of the
peak, is indeed negligible.

Over 9% of the scattering from the neon sample is from22Ne (see table 4) and so an
attempt was made to isolate the scattering from this component by fitting to the recoil peak
in the manner explained above, and subtracting the contributions from20Ne and21Ne. The
resulting TOF spectra were too noisy and were not of sufficient quality to merit any further
analysis.

As the filter-difference method employs an intense broad spectrum of incident neutrons,
it is not well adapted for precise study of relatively weak scattering in the extreme wings of
J (y) because the counting statistics over the entire range ofJ (y) are essentially constant.
Neutron Compton scattering from condensed neon is expected to be essentially that from
a single Gaussiann(p) and this assumption is made throughout our analysis. The present
work also is a critical test of the stability and consistency of measurements made with eVS
under various experimental conditions.

4.2. Correction for final-state effects

Owing to the extremely large wavevector transfers used in the present work (table 1 and
figures 3(a)–3(d)), FSEs to these data are expected to be very small. Nevertheless, the high
precision of the present data justifies explicit consideration of this small correction.

For present purposes, we writeS(Q, E) as the sum of symmetric(Ss(Q, E)) and
antisymmetric(Sa(Q, E)) parts, respectively [33]:

Ss(Q, E) = m

h̄Q

[
1 + A4(Q)

d4

dy4

]
J (y) (13)

and

Sa(Q, E) = m

h̄Q

[
−A3(Q)

d3

dy3

]
J (y). (14)

In these equations, only the leading correction to the IA is retained in each case because,
at largerQ, A3 decreases asQ−1 andA4 decreases asQ−2. Explicitly,

A3 = m∇2V

36h̄Q
(15)
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and

A4 = m2〈F 2〉
72h̄4Q2

(16)

whereV is the potential andF is the force on an atom. Also explicitly,

〈∇2V (r)〉 = 4πρ

∫
∇2V (r)g(r)r2 dr (17)

whereg(r) is the pair distribution function.

In the range of the present work, 30.5 Å
−1

< Q < 272.5 Å
−1

, the magnitude ofA3

is at most 10% of that expected in the data [34] analysed by Sears [35]. Moreover, those
data [34] contain visible oscillations in the width ofS(Q, E) which, while interesting as
possible interatomic interference effects, are an obstacle to unambiguous removal of FSEs
by this method. Our values of〈Ek〉, without FSE correction, are presented in table 5 for
solid neon. Our resolution-broadened measurements can be well fitted by a symmetric Voigt
function or Gaussian function (as appropriate); hence we assume that any effects on the
deduced〈Ek〉-values by anA3 contribution are negligible. One expects in any case that
coupling of an antisymmetric component to determination of a peak width is small. We
select the〈Ek〉-values determined from the data collected in measurement A with the U
foil and scintillation detectors as being the most reliable. We do this mainly because this
combination of analyser foil–detector–scattering angle offers the most favourable resolution.
The statistical accuracy of these data is better than that obtained in measurement B and is
the consequence of the limited run time available for this measurement.

Table 5. Deduced values of the kinetic energy of FCC neon. For the present experimental work,
deduced values apply to20Ne in the natural mixture.

Experimental measurements

Density Temperature 〈Ek(ρ, T )〉
(nm−3) (K) (K) Reference

44.97 4.25(5) 44(1) Present experiment A
44.97 4.34(5) 44(3) Present experiment B
44.97 4.7(1) 49(3) Peeket al
44.26 9.4(1) 49(4) Peeket al
44.68 10.2(1) 43(1) Present experiment A
44.81 10.8(1) 45(5) Present experiment B
44.77 11.4(2) 49(3) Peeket al
44.45 15.2(1) 50(3) Present experiment B
44.12 17.8(2) 51(3) Peeket al
43.76 20.1(1) 48(3) Present experiment B
43.91 20.2(1) 48(1) Present experiment A

It is worth considering symmetrization of the measured neutron Compton profile in order
to remove effects caused by the asymmetric component due to theA3 term. One factor
in deciding whether to do this is the size of the effect. For the more accurate uranium
resonance–scintillation data combination we estimate the effect of theA3 term would be
to reduce the extracted〈Ek〉 by an amount less than the statistical accuracy of these data.
Furthermore, the extent to which symmetrization broadens the extracted value ofσ depends
strongly on the position iny space about which the data are symmetrized. Ideally the value
y = 0 should be chosen, but small calibration errors can affect the true position of the
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Figure 3. Neutron Compton profiles obtained from FCC neon at 4.25 K. In all cases the
experimental points (◦ ) have been converted toJ (y). They have been fitted (——) to a
convolution of the resolution function (listed in table 2) with a Gaussian: (a) data for 145◦
gas-detector bank and Au foil (4922 meV). (b) data for 145◦ gas-detector bank and U foil
(6671 meV) (note that the U resolution is narrower); (c) data for 145◦ gas-detector bank and
U foil (36 380 meV) (these data are dominated by the resolution broadening); (d) data for
117◦ scintillator-detector bank and U foil (6671 meV) (these data have much higher statistical
precision than those from the gas detectors because of the high efficiency of this detector).

centre of the recoil peak. We conclude that, in this case, symmetrization of the data is not
worthwhile.
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Figure 3. (Continued)

4.3. Comparison with previous experiments

The relation between theJ (y) distributions (e.g. figures 3(a)–3(d)) and the average kinetic
energies〈Ek〉 is given by

〈Ek〉 = 3h̄2σ 2

2mkB

(in K) (18)
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wherekB is the Boltzmann constant. In figure 4 we show our values of〈Ek〉 for solid neon
along with those of Peeket al [12] which were obtained with a chopper spectrometer at
much lowerQ. The data due to Peeket al for solid neon are some 10% larger than the eVS
data presented here. The source of this apparent systematic discrepancy is not clear. There
are several possible factors, although their relative importances are difficult to ascertain. In
searching for possible systematic errors, Peeket al used different data analyses, analytical
versus numerical, to account for data conversions from constant angle to constantQ. These
two methods agreed, but it is now known that both are less satisfactory than full Monte Carlo
simulation of the spectrometer [36]. Peeket al also used empirical fitting and subtraction
of supposed multiple scattering (neon–neon and neon–sample can), with results which were
later seen to be qualitatively different from Monte Carlo simulation [36]. Finally, FSE
corrections by Peeket al used measured liquidg(r) scaled from liquid data. The present
PIMC g(r) show some small but systematic offsets inr from those measurements. As
pointed out by Peeket al, even in the presence of possible systematic errors in the absolute
value of〈Ek〉, relative values are more precise. We agree with the temperature dependence
〈Ek(T )〉 as found by Peeket al.

Figure 4. Values for〈EK 〉 for solid neon obtained with the U foil and scintillator detectors in
measurement A together with the data of Peeket al [12]. The new PIMC calculations using
both the Lennard-Jones and the Aziz potentials are seen to be in agreement with the eVS data.

5. Path-integral Monte Carlo calculations

Published calculations of〈Ek(ρ, T )〉 were listed by Peeket al in comparisons with their
direct measurements on solid [12] and liquid neon [13]. Almost none of these calculations
was specifically addressed to〈Ek(ρ, T )〉-values, and no quantitative agreement was found
with measured values for any result of claimed high precision. Therefore, here we present
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a rigorous model for condensed neon. The adequacy of a pair potential to model the
atom–atom interaction in condensed neon can be tested theoretically by performing a PIMC
simulation of an ensemble of neon atoms.

The PIMC technique is a powerful computational tool, affording quantitative studies of
quantum many-particle systems at finite temperatures; it has proven remarkably successful
in the investigation of complex Bose systems, such as superfluid4He [37]. In this work we
utilize it to evaluate〈Ek(ρ, T )〉 for solid neon, as well as to compute the pair distribution
function g(r), which is needed to calculate〈∇2V 〉 (equation (17)). Because there exist
comprehensive review articles where this method is thoroughly described (see, e.g., [38]),
we only sketch here its essential elements and discuss the aspects that are most relevant
to the problem of interest. Given a quantum system ofN particles, characterized by a
HamiltonianH , one can evaluate the thermodynamic average of a physical observableO

for the system in thermal equilibrium at a temperatureT as

〈O〉 = 1

Z

∫ ∫
dR dR′O(R, R′)ρ(R, R′; β) (19)

where |R〉 ≡ |r1, r2, . . . , rN 〉 is a configuration ket specified by the position of allN

particles,O(R, R′) = 〈R|O|R′〉, ρ(R, R′) = 〈R| exp(−βH)|R′〉 (with β = 1/kBT ) is
the many-body density matrix andZ = ∫

dRρ(R, R′; β) is the partition function. On
writing exp(−βĤ ) = [exp(−τĤ )]M , with β = Mτ , one can transform (19) into

〈O〉 =
∫ · · · ∫ dR1 dR2, . . . , dRM−1ρ(R, R1; τ)ρ(R1, R2; τ) . . . ρ(RM−1, R; τ)O(R)∫ · · · ∫ dR1 dR2, . . . , dRM−1ρ(R, R1; τ)ρ(R1, R2; τ) . . . ρ(RM−1, R; τ)

.

(20)

A PIMC calculation consists in generating stochastically a set of independent random
walks (paths) through the configuration space. Each path originates at a different starting
N -particle configurationR and returns to it after visitingM − 1 other configurations
R1, R2, . . . ,RM−1. Provided that the walks be statistically drawn from a probability density
proportional toρ(R1, R2; τ) . . . ρ(RM−1, RM; τ), the quantity〈O〉 can be evaluated as a
statistical average of the values of the matrix elementsO(R1, RM). The main point is that,
asM increases (i.e. asτ → 0), one can obtain an explicit approximation forρ(R, R′; τ)

and this allows the generation of the above-mentioned set of random walks, by means of
difference procedures [38].

The numberM of ‘slices’ in which the intervalβ must be partitioned for the product
ρ(R1, R2; τ) . . . ρ(RM−1, RM; τ) to be a satisfactory approximation toρ(R, R′; β)

depends on how accurate an approximation one can obtain forρ(R, R′; τ). It is highly
desirable to keep the numberM down to a minimum (i.e. paths as short as possible), in order
for the calculation to be efficient. To this aim, a remarkably effective form forρ(R, R′; τ)

is given by

ρ(R, R′; τ) = ρ(0)(R, R′; τ) exp

[
−

∑
i<j

u(rij , r
′
ij ; τ)

]
(21)

whereρ(0)(R, R′; τ) is the density matrix for a system ofN free particles andu is defined
to be exact for two interacting neon atoms;rij and r ′

ij are the distances between two
neon particles at two successive slices, separated byτ . Ceperley and Pollock [39] found
that using the pair-product form, equation (21), forρ(R, R′; τ) substantially improves the
method, as it affords a much greater accuracy, particularly at low temperatures, than the
so-called ‘primitive’, or semiclassical, approximation, which is the most commonly used
approximation forρ(R, R′, τ ).
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Figure 5. Here we compare our PIMC estimates for〈EK 〉, obtained with both the Aziz HFD-C2
and the Lennard-Jones potential, with the theoretical results of Asger and Usmani who used a
Wigner–Kirkwood expansion, and with the PIMC results of Cuccoliet al.

In this work we have performed a simulation of 108 neon atoms interacting
via an accepted Aziz [40] HFD-C pair potential; for comparison purposes we also
performed calculations with the Lennard-Jones potential [41]. We utilized the pair-product
form equation (21) for the ‘high-temperature’ density matrix and observed evidence of
convergence of the results with a numberM of slices as low as 10. In order to check for
consistency of our results, we repeated the calculation withM = 20 and found no change
in the thermal averages, within our statistical uncertainties.

In our PIMC calculation we neglected atomic exchanges, although they can be
incorporated into the PIMC formalism [40, 42]. Their effect is negligible in neon.

It is important to note that PIMC allows us to calculate physical properties on a similar
basis forboth crystalline and liquid phases, at finite temperatures. We have studied the solid
(FCC) phase of neon at the temperatures and densities corresponding to our experimental
conditions (table 3); we computed the kinetic energy〈Ek(ρ, T )〉 per particle and the pair
distribution functiong(r).

In figure 5 and table 6 we compare our PIMC estimates for the kinetic energy with those
obtained with both the Aziz HFD-C2 and the Lennard-Jones potential with theoretical results
by Asger and Usmani [43], who used a Wigner–Kirkwood high-temperature expansion
including terms up to ¯h6, and by Cuccoliet al [42], who performed a PIMC calculation.

The results of our calculation are in agreement with those reported by Cuccoliet al [42];
no significant difference arises from the use of a different potential, at least in the temperature
and density regimes explored in this work. Such theoretical estimates are in agreement with
the experimental data; this is an indication of the validity of a microscopic description based
on a two-body potential. Many-body effects are known to affect significantly the equation
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of state, particularly at high pressures; however, the kinetic energy is mostly affected by
the repulsive hard core of the two-body part of the interaction potential, as a recent PIMC
calculation for high-density helium has shown [44].

We also computed the pair distribution functiong(r); typical results are shown in
figure 6, angle averaged for the FCC phase atT = 20.2 K. Well defined second- and
third-nearest-neighbour peaks are present. We computedg(r) with both the HFD-C2 and
the Lennard-Jones potential; here too, no significant difference was found between the
results obtained with the two potentials. The calculated pair distribution functionsg(r)

were employed to determine〈∇2V 〉 from equation (17).
As the results reported in table 6 and figure 5 show, the kinetic energy estimates obtained

by Asger and Usmani are significantly larger than those produced by the PIMC (as well as
the experimental data), the difference being of the order of 4–5 K; moreover, their kinetic
energies for the two potentials are significantly different with the HFD-C2 potential yielding
a slightly larger kinetic energy value than the Lennard-Jones potential does. This raises some
doubts about the convergence of the expansion, which is known to be rather slow when
one is dealing with hard-core potential such as those of relevance here. On the other hand,
PIMC estimates should be very accurate, given the size of the systems studied; on this point
we note once again the agreement between our calculation and the independent calculation
by Cuccoliet al .

The new PIMC FCC neon values were also included in figure 4. They are compared
with the present values measured on eVS and the previous measurements on FCC neon
made by Peeket al [12]. Good agreement between the PIMC calculations and the eVS
results is observed.

6. Conclusions

Measurements ofJ (y) and hencen(P ) and 〈Ek〉 have been made for the simple system
of solid neon at a number of temperatures between 4.25 and 20.2 K using two different
spectrometer configurations. The agreement between data obtained at similar temperatures

Table 6. Calculated values of kinetic energy of FCC neon: WKE, Wigner–Kirkwood expansion.

Theoretical calculations

Density Temperature 〈Ek(ρ, T )〉 (K) for the following potentials
(nm−3) (K) Aziz Lennard-Jones Method Reference

44.97 4.125 41.6(1) 42.0(3) PIMC Present work
44.97 5.00 — 42.8(4) PIMC [42]
44.88 9.220 48.8(1) — WKE [43]
44.87 9.370 — 49.8(2) WKE [43]
44.86 10.00 — 43.2(6) PIMC [42]
44.85 10.154 42.6(1) 43.2(1) PIMC Present work
44.74 12.02 — 49.8 WKE [43]
44.73 12.10 52.8 — WKE [43]
44.48 15.00 — 44.7(7) PIMC [42]
44.48 15.687 46.5(1) — PIMC Present work
44.26 17.97 54.5 — WKE [43]
44.26 18.09 — 51.3 WKE [43]
43.78 20.00 — 47.7(9) PIMC [42]
43.50 20.308 47.8(1) 47.8(1) PIMC Present work
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Figure 6. Angle-averaged pair distribution functiong(r) for FCC neon atT = 20.2 K, computed
by PIMC (see section 5.1).

demonstrates that the data are free from systematic errors above the statistical accuracy of
the measurements. We have considered the effects of multiple scattering on these data and
have shown that they are below the statistical accuracy of these data and no correction was
deemed necessary. Similarly, we have estimated FSEs to be small and no correction has
been implemented.

The measured〈Ek〉 are significantly lower than previous measurements by Peeket al
and we list some possible contributions to systematic errors in their data analysis. From
figure 4 we can estimate that the ground state in neon is reached at about 10–15 K, in
agreement with the data of Peeket al.

PIMC calculations of solid neon kinetic energy were published by Cuccoliet al who used
a Lennard-Jones pair potential. Good agreement is observed at all temperatures between
their data and our PIMC calculations performed using both the Lennard-Jones and the Aziz
potentials. This suggests that the mean kinetic energy is insensitive to the type of atomic
potential used and we conclude that a two-body potential is sufficient to describe the atomic
kinetic energy measured here. On the other hand, PIMC results for〈Ek〉 are significantly
lower than those obtained using a Wigner–Kirkwood expansion for the same two potentials.
This demonstrates that the expansion, carried out to terms in ¯h6, is not convergent in the
case of solid neon.
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[17] Bermejo F J, Mompéan F J, Srinivasan A, Mayers J and Evans A C 1994Phys. Lett.189A 333
[18] Peek D A and Simmons R O 1991J. Chem. Phys.94 3169
[19] Lovesey S W 1984Theory of Neutron Scattering from Condensed Matter(Oxford: Clarendon)
[20] Sears V F 1984Phys. Rev.B 30 44
[21] Evans A C, Mayers J, Timms D N and Cooper M J 1993Z. Naturf.a 48 415

Mayers J and Evans A C 1991Rutherford Appleton Laboratory ReportRAL-91-048
[22] Mayers J and Evans A C 1991Rutherford Appleton Laboratory ReportRAL-91-048
[23] Evans A C, Mayers J and Timms D N 1994J. Phys.: Condens. Matter6 4197–212
[24] Andreani C, Baciocco G, Holt R S and Mayers J 1989Nucl. Instrum. MethodsA 276 297
[25] Evans A C 1993PhD ThesisUniversity of Warwick
[26] Mughabghab S F, Divadeenam M and Holden N E 1981Neutron Cross Sectionsvol 1, part A (New York:

Academic)
[27] Mguhabghab S F 1981Neutron Cross Sectionsvol 1, part B (New York: Academic)
[28] Chemically pure natural Ne from British Oxygen Company
[29] AS Scientific Products Ltd, 2 Barton Lane, Abingdon OX14 3NB, UK
[30] Batchelder D N, Losee D L and Simmons R O 1967Phys. Rev.162 767
[31] Holden N E 1992Handbook of Chemistry and Physicsed D R Lide (Boca Raton, FL: CRC Press) pp 11–28
[32] Sears V F 1986Methods of Experimental Physics. Neutron Scatteringvol 23, part A, ed K Sk̈old and D L

Price (Orlando, FL: Academic) p 521
[33] Sears V F 1988Phys. Rev.B 30 44
[34] Buyers W L, Sears V F, Lonngi P A and Lonngi D A 1975 Phys. Rev.A 11 697
[35] Sears V F 1981Can. J. Phys.59 555
[36] Fradkin M A, Zeng S X and Simmons R O 1994Phys. Rev.B 49 3197



6684 D N Timms et al

[37] Ceperley D M and Pollock E L 1991 Monte Carlo Methods in Theoretical Physicsed S Caracciolo and A
Fabrocini (Pisa: ETS Publishing)

[38] Schmidt K E and Ceperley D M 1992 The Monte Carlo Method in Condensed Matter Physicsed K Binder
(New York: Springer)

[39] Ceperley D M and Pollock E L 1986Phys. Rev. Lett.56 351
[40] Aziz R A 1984 Inert Gases: Potentials, Dynamics, and Energy Transfer in Doped Crystalsed M L Klein

(Berlin: Springer)
[41] Brown J S 1966Proc. Phys. Soc.89 987
[42] Cuccoli A, Macchi A, Tognetti V and Vaia R 1993Phys. Rev.B 47 14 923
[43] Asger M and Usmani Q N 1994Phys. Rev.B 49 12 262
[44] Boninsegni M, Pierleoni C and Ceperley D M 1994 Phys. Rev. Lett.72 1854


